"""
This module contains some fast utility functions that are useful in the same contexts as camb. They are entirely
independent of the main camb code.
"""
from ctypes import c_int, c_double, c_bool, POINTER
from .baseconfig import camblib, numpy_1d, numpy_2d, numpy_3d
import numpy as np
_chi2 = camblib.__mathutils_MOD_getchisquared
_chi2.argtypes = [numpy_2d, numpy_1d, POINTER(c_int)]
_chi2.restype = c_double
[docs]
def chi_squared(covinv, x):
"""
Utility function to efficiently calculate x^T covinv x
:param covinv: symmetric inverse covariance matrix
:param x: vector
:return: covinv.dot(x).dot(x), but parallelized and using symmetry
"""
if len(x) != covinv.shape[0] or covinv.shape[0] != covinv.shape[1]:
raise ValueError('Wrong shape in chi_squared')
return _chi2(covinv, x, c_int(len(x)))
int_arg = POINTER(c_int)
_3j = camblib.__mathutils_MOD_getthreejs
_3j.argtypes = [numpy_1d, int_arg, int_arg, int_arg, int_arg]
[docs]
def threej(l2, l3, m2, m3):
"""
Convenience wrapper around standard 3j function, returning array for all allowed l1 values
:param l2: L_2
:param l3: L_3
:param m2: M_2
:param m3: M_3
:return: array of 3j from max(abs(l2-l3),abs(m2+m3)) .. l2+l3
"""
l1min = max(np.abs(l2 - l3), np.abs(m2 + m3))
result = np.zeros(int(l3 + l2 - l1min + 1))
l2in, l3in, m2in, m3in = c_int(l2), c_int(l3), c_int(m2), c_int(m3)
_3j(result, l2in, l3in, m2in, m3in)
return result
[docs]
def threej_pt(l1, l2, l3, m1, m2, m3):
"""
Convenience testing function to get 3j for specific arguments.
Normally use threej to get an array at once for same cost.
:param l1: L_1
:param l2: L_2
:param l3: L_3
:param m1: M_1
:param m2: M_2
:param m3: M_3
:return: Wigner 3j (integer zero if outside triangle constraints)
"""
if m1 + m2 + m3:
return 0
l1min = max(np.abs(l2 - l3), np.abs(m1))
if l1 < l1min or l1 > l2 + l3:
return 0
wigner = threej(l2, l3, m2, m3)
return wigner[l1 - l1min]
# Utils_3j_integrate(W,lmax_w, n, dopol, M, lmax)
_coupling_3j = camblib.__mathutils_MOD_integrate_3j
_coupling_3j.argtypes = [numpy_2d, POINTER(c_int), POINTER(c_int), POINTER(c_bool), numpy_3d, POINTER(c_int)]
[docs]
def threej_coupling(W, lmax, pol=False):
r"""
Calculate symmetric coupling matrix :math`\Xi` for given weights :math:`W_{\ell}`,
where :math:`\langle\tilde{C}_\ell\rangle = \Xi_{\ell \ell'} (2\ell'+1) C_\ell`.
The weights are related to the power spectrum of the mask P
by :math:`W_\ell = (2 \ell + 1) P_\ell / 4 \pi`.
See e.g. Eq D16 of `arxiv:0801.0554 <http://arxiv.org/abs/0801.0554>`_.
If pol is False and W is an array of weights, produces array of temperature couplings, otherwise for pol is True
produces set of TT, TE, EE, EB couplings (and weights must have one spectrum - for same masks - or three).
Use :func:`scalar_coupling_matrix` or :func:`pcl_coupling_matrix` to get the coupling matrix directly from the
mask power spectrum.
:param W: 1d array of Weights for each L, or list of arrays of weights (zero based)
:param lmax: lmax for the output matrix (assumed symmetric, though not in principle)
:param pol: if pol, produce TT, TE, EE, EB couplings for three input mask weights (or one if assuming same mask)
:return: symmetric coupling matrix or array of matrices
"""
if not isinstance(W, (list, tuple)):
W = [W]
if pol:
n = 4
if len(W) == 1:
W = W * 3
assert len(W) == 3
else:
n = len(W)
M = np.zeros((n, lmax + 1, lmax + 1))
nW = len(W)
lmax_w = min(2 * lmax, len(W[0]) - 1)
for m in W[1:]:
assert lmax_w == min(2 * lmax, len(m) - 1)
Wmat = np.empty((nW, lmax_w + 1))
for i, m in enumerate(W):
Wmat[i, :] = m[:lmax_w + 1]
_coupling_3j(Wmat, c_int(lmax_w), c_int(nW), c_bool(pol), M, c_int(lmax))
if n == 1:
return M[0, :, :]
else:
return [M[i, :, :] for i in range(n)]
[docs]
def scalar_coupling_matrix(P, lmax):
"""
Get scalar Pseudo-Cl coupling matrix from power spectrum of mask, or array of power masks.
Uses multiple threads. See Eq A31 of `astro-ph/0105302 <https://arxiv.org/abs/astro-ph/0105302>`_
:param P: power spectrum of mask, or list of mask power spectra
:param lmax: lmax for the matrix (assumed square)
:return: coupling matrix (square but not symmetric), or list of couplings for different masks
"""
if not isinstance(P, (list, tuple)):
P = [P]
elif any(x.size != P[0].size for x in P[1:]):
raise ValueError('Mask power spectra must have same lmax')
lmax_power = min(P[0].size - 1, 2 * lmax)
if lmax_power < 2 * lmax:
print('Warning: power spectrum lmax is less than 2*lmax')
fac = (2 * np.arange(lmax_power + 1) + 1) / 4 / np.pi
M = threej_coupling([fac * power for power in P], lmax)
factor = 2 * np.arange(lmax + 1) + 1
if len(P) == 1:
return M * factor
else:
return [m * factor for m in M]
[docs]
def pcl_coupling_matrix(P, lmax, pol=False):
"""
Get Pseudo-Cl coupling matrix from power spectrum of mask.
Uses multiple threads. See Eq A31 of `astro-ph/0105302 <https://arxiv.org/abs/astro-ph/0105302>`_
:param P: power spectrum of mask
:param lmax: lmax for the matrix
:param pol: whether to calculate TE, EE, BB couplings
:return: coupling matrix (square but not symmetric), or list of TT, TE, EE, BB if pol
"""
lmax_power = min(P.size - 1, 2 * lmax)
if lmax_power < 2 * lmax:
print('Warning: power spectrum lmax is less than 2*lmax')
W = (2 * np.arange(lmax_power + 1) + 1) * P / (4 * np.pi)
M = threej_coupling(W, lmax, pol=pol)
factor = 2 * np.arange(lmax + 1) + 1
if pol:
return [mat * factor for mat in M]
else:
return M * factor
_gauss_legendre = camblib.__mathutils_MOD_gauss_legendre
_gauss_legendre.argtypes = [numpy_1d, numpy_1d, int_arg]
def gauss_legendre(xvals, weights, npoints):
_gauss_legendre(xvals, weights, c_int(npoints))