Input parameter model
- class camb.model.CAMBparams(*args, **kwargs)[source]
Object storing the parameters for a CAMB calculation, including cosmological parameters and settings for what to calculate. When a new object is instantiated, default parameters are set automatically.
To add a new parameter, add it to the CAMBparams type in model.f90, then edit the _fields_ list in the CAMBparams class in model.py to add the new parameter in the corresponding location of the member list. After rebuilding the python version you can then access the parameter by using params.new_parameter_name where params is a CAMBparams instance. You could also modify the wrapper functions to set the field value less directly.
You can view the set of underlying parameters used by the Fortran code by printing the CAMBparams instance. In python, to set cosmology parameters it is usually best to use
set_cosmology()
and equivalent methods for most other parameters. Alternatively the convenience functioncamb.set_params()
can construct a complete instance from a dictionary of relevant parameters. You can also save and restore a CAMBparams instance using the repr and eval functions, or pickle it.- Variables:
WantCls – (boolean) Calculate C_L
WantTransfer – (boolean) Calculate matter transfer functions and matter power spectrum
WantScalars – (boolean) Calculates scalar modes
WantTensors – (boolean) Calculate tensor modes
WantVectors – (boolean) Calculate vector modes
WantDerivedParameters – (boolean) Calculate derived parameters
Want_cl_2D_array – (boolean) For the C_L, include NxN matrix of all possible cross-spectra between sources
Want_CMB – (boolean) Calculate the temperature and polarization power spectra
Want_CMB_lensing – (boolean) Calculate the lensing potential power spectrum
DoLensing – (boolean) Include CMB lensing
NonLinear – (integer/string, one of: NonLinear_none, NonLinear_pk, NonLinear_lens, NonLinear_both)
Transfer –
camb.model.TransferParams
want_zstar – (boolean)
want_zdrag – (boolean)
min_l – (integer) l_min for the scalar C_L (1 or 2, L=1 dipoles are Newtonian Gauge)
max_l – (integer) l_max for the scalar C_L
max_l_tensor – (integer) l_max for the tensor C_L
max_eta_k – (float64) Maximum k*eta_0 for scalar C_L, where eta_0 is the conformal time today
max_eta_k_tensor – (float64) Maximum k*eta_0 for tensor C_L, where eta_0 is the conformal time today
ombh2 – (float64) Omega_baryon h^2
omch2 – (float64) Omega_cdm h^2
omk – (float64) Omega_K
omnuh2 – (float64) Omega_massive_neutrino h^2
H0 – (float64) Hubble parameter is km/s/Mpc units
TCMB – (float64) CMB temperature today in Kelvin
YHe – (float64) Helium mass fraction
num_nu_massless – (float64) Effective number of massless neutrinos
num_nu_massive – (integer) Total physical (integer) number of massive neutrino species
nu_mass_eigenstates – (integer) Number of non-degenerate mass eigenstates
share_delta_neff – (boolean) Share the non-integer part of num_nu_massless between the eigenstates
nu_mass_degeneracies – (float64 array) Degeneracy of each distinct eigenstate
nu_mass_fractions – (float64 array) Mass fraction in each distinct eigenstate
nu_mass_numbers – (integer array) Number of physical neutrinos per distinct eigenstate
InitPower –
camb.initialpower.InitialPower
DarkEnergy –
camb.dark_energy.DarkEnergyModel
NonLinearModel –
camb.nonlinear.NonLinearModel
Accuracy –
camb.model.AccuracyParams
SourceTerms –
camb.model.SourceTermParams
z_outputs – (float64 array) redshifts to always calculate BAO output parameters
scalar_initial_condition – (integer/string, one of: initial_vector, initial_adiabatic, initial_iso_CDM, initial_iso_baryon, initial_iso_neutrino, initial_iso_neutrino_vel)
InitialConditionVector – (float64 array) if scalar_initial_condition is initial_vector, the vector of initial condition amplitudes
OutputNormalization – (integer) If non-zero, multipole to normalize the C_L at
Alens – (float64) non-physical scaling amplitude for the CMB lensing spectrum power
MassiveNuMethod – (integer/string, one of: Nu_int, Nu_trunc, Nu_approx, Nu_best)
DoLateRadTruncation – (boolean) If true, use smooth approx to radiation perturbations after decoupling on small scales, saving evolution of irrelevant oscillatory multipole equations
Evolve_baryon_cs – (boolean) Evolve a separate equation for the baryon sound speed rather than using background approximation
Evolve_delta_xe – (boolean) Evolve ionization fraction perturbations
Evolve_delta_Ts – (boolean) Evolve the spin temperature perturbation (for 21cm)
Do21cm – (boolean) 21cm is not yet implemented via the python wrapper
transfer_21cm_cl – (boolean) Get 21cm C_L at a given fixed redshift
Log_lvalues – (boolean) Use log spacing for sampling in L
use_cl_spline_template – (boolean) When interpolating use a fiducial spectrum shape to define ratio to spline
min_l_logl_sampling – (integer) Minimum L to use log sampling for L
SourceWindows – array of
camb.sources.SourceWindow
CustomSources –
camb.model.CustomSources
- property N_eff
- Returns:
Effective number of degrees of freedom in relativistic species at early times.
- copy()
Make an independent copy of this object.
- Returns:
a deep copy of self
- classmethod dict(state)
Make an instance of the class from a dictionary of field values (used to restore from repr)
- Parameters:
state – dictionary of values
- Returns:
new instance
- diff(params)[source]
Print differences between this set of parameters and params
- Parameters:
params – another CAMBparams instance
- get_DH(ombh2=None, delta_neff=None)[source]
Get deuterium ration D/H by interpolation using the
bbn.BBNPredictor
instance passed toset_cosmology()
(or the default one, if Y_He has not been set).- Parameters:
ombh2 – \(\Omega_b h^2\) (default: value passed to
set_cosmology()
)delta_neff – additional \(N_{\rm eff}\) relative to standard value (of 3.044) (default: from values passed to
set_cosmology()
)
- Returns:
BBN helium nucleon fraction D/H
- get_Y_p(ombh2=None, delta_neff=None)[source]
Get BBN helium nucleon fraction (NOT the same as the mass fraction Y_He) by interpolation using the
bbn.BBNPredictor
instance passed toset_cosmology()
(or the default one, if Y_He has not been set).- Parameters:
ombh2 – \(\Omega_b h^2\) (default: value passed to
set_cosmology()
)delta_neff – additional \(N_{\rm eff}\) relative to standard value (of 3.044) (default: from values passed to
set_cosmology()
)
- Returns:
\(Y_p^{\rm BBN}\) helium nucleon fraction predicted by BBN.
- replace(instance)
Replace the content of this class with another instance, doing a deep copy (in Fortran)
- Parameters:
instance – instance of the same class to replace this instance with
- scalar_power(k)[source]
Get the primordial scalar curvature power spectrum at \(k\)
- Parameters:
k – wavenumber \(k\) (in \({\rm Mpc}^{-1}\) units)
- Returns:
power spectrum at \(k\)
- set_H0_for_theta(theta, cosmomc_approx=False, theta_H0_range=(10, 100), est_H0=67.0, iteration_threshold=8, setter_H0=None)[source]
Set H0 to give a specified value of the acoustic angular scale parameter theta.
- Parameters:
theta – value of \(r_s/D_M\) at redshift \(z_\star\)
cosmomc_approx – if true, use approximate fitting formula for \(z_\star\), if false do full numerical calculation
theta_H0_range – min, max interval to search for H0 (in km/s/Mpc)
est_H0 – an initial guess for H0 in km/s/Mpc, used in the case cosmomc_approx=False.
iteration_threshold – difference in H0 from est_H0 for which to iterate, used for cosmomc_approx=False to correct for small changes in zstar when H0 changes
setter_H0 – if specified, a function to call to set H0 for each iteration to find thetstar. It should be a function(pars: CAMBParams, H0: float). Not normally needed, but can be used e.g. when DE model needs to be changed for each H0 because it depends explicitly on e.g. Omega_m.
- set_accuracy(AccuracyBoost=1.0, lSampleBoost=1.0, lAccuracyBoost=1.0, DoLateRadTruncation=True, min_l_logl_sampling=None)[source]
Set parameters determining overall calculation accuracy (large values may give big slow down). For finer control you can set individual accuracy parameters by changing CAMBParams.Accuracy (
model.AccuracyParams
) .- Parameters:
AccuracyBoost – increase AccuracyBoost to decrease integration step size, increase density of k sampling, etc.
lSampleBoost – increase lSampleBoost to increase density of L sampling for CMB
lAccuracyBoost – increase lAccuracyBoost to increase the maximum L included in the Boltzmann hierarchies
DoLateRadTruncation – If True, use approximation to radiation perturbation evolution at late times
min_l_logl_sampling – at L>min_l_logl_sampling uses sparser log sampling for L interpolation; increase above 5000 for better accuracy at L > 5000
- Returns:
self
- set_classes(dark_energy_model=None, initial_power_model=None, non_linear_model=None, recombination_model=None, reionization_model=None)[source]
Change the classes used to implement parts of the model.
- Parameters:
dark_energy_model – ‘fluid’, ‘ppf’, or name of a DarkEnergyModel class
initial_power_model – name of an InitialPower class
non_linear_model – name of a NonLinearModel class
recombination_model – name of RecombinationModel class
reionization_model – name of a ReionizationModel class
- set_cosmology(H0: float | None = None, ombh2=0.022, omch2=0.12, omk=0.0, cosmomc_theta: float | None = None, thetastar: float | None = None, neutrino_hierarchy: str | int = 'degenerate', num_massive_neutrinos=1, mnu=0.06, nnu=3.044, YHe: float | None = None, meffsterile=0.0, standard_neutrino_neff=3.044, TCMB=2.7255, tau: float | None = None, zrei: float | None = None, Alens=1.0, bbn_predictor: None | str | BBNPredictor = None, theta_H0_range=(10, 100), setter_H0=None)[source]
Sets cosmological parameters in terms of physical densities and parameters (e.g. as used in Planck analyses). Default settings give a single distinct neutrino mass eigenstate, by default one neutrino with mnu = 0.06eV. Set the neutrino_hierarchy parameter to normal or inverted to use a two-eigenstate model that is a good approximation to the known mass splittings seen in oscillation measurements. For more fine-grained control can set the neutrino parameters directly rather than using this function.
Instead of setting the Hubble parameter directly, you can instead set the acoustic scale parameter (cosmomc_theta, which is based on a fitting formula for simple models, or thetastar, which is numerically calculated more generally). Note that you must have already set the dark energy model, you can’t use set_cosmology with theta and then change the background evolution (which would change theta at the calculated H0 value). Likewise, the dark energy model cannot depend explicitly on H0 unless you provide a custom setter_H0 function to update the model for each H0 iteration used to search for thetastar.
- Parameters:
H0 – Hubble parameter today in km/s/Mpc. Can leave unset and instead set thetastar or cosmomc_theta (which solves for the required H0).
ombh2 – physical density in baryons
omch2 – physical density in cold dark matter
omk – Omega_K curvature parameter
cosmomc_theta – The approximate CosmoMC theta parameter \(\theta_{\rm MC}\). The angular diameter distance is calculated numerically, but the redshift \(z_\star\) is calculated using an approximate (quite accurate but non-general) fitting formula. Leave unset to use H0 or thetastar.
thetastar – The angular acoustic scale parameter \(\theta_\star = r_s(z_*)/D_M(z_*)\), defined as the ratio of the photon-baryon sound horizon \(r_s\) to the angular diameter distance \(D_M\), where both quantities are evaluated at \(z_*\), the redshift at which the optical depth (excluding reionization) is unity. Leave unset to use H0 or cosmomc_theta.
neutrino_hierarchy – ‘degenerate’, ‘normal’, or ‘inverted’ (1 or 2 eigenstate approximation)
num_massive_neutrinos – number of massive neutrinos
mnu – sum of neutrino masses (in eV). Omega_nu is calculated approximately from this assuming neutrinos non-relativistic today; i.e. here is defined as a direct proxy for Omega_nu. Internally the actual physical mass is calculated from the Omega_nu accounting for small mass-dependent velocity corrections but neglecting spectral distortions to the neutrino distribution. Set the neutrino field values directly if you need finer control or more complex neutrino models.
nnu – N_eff, effective relativistic degrees of freedom
YHe – Helium mass fraction. If None, set from BBN consistency.
meffsterile – effective mass of sterile neutrinos
standard_neutrino_neff – default value for N_eff in standard cosmology (non-integer to allow for partial heating of neutrinos at electron-positron annihilation and QED effects)
TCMB – CMB temperature (in Kelvin)
tau – optical depth; if None and zrei is None, current Reion settings are not changed
zrei – reionization mid-point optical depth (set tau=None to use this)
Alens – (non-physical) scaling of the lensing potential compared to prediction
bbn_predictor –
bbn.BBNPredictor
instance used to get YHe from BBN consistency if YHe is None, or name of a BBN predictor class, or file name of an interpolation tabletheta_H0_range – if thetastar or cosmomc_theta is specified, the min, max interval of H0 values to map to; if H0 is outside this range it will raise an exception.
setter_H0 – if specified, a function to call to set H0 for each iteration to find thetastar. It should be a function(pars: CAMBParams, H0: float). Not normally needed, but can be used e.g. when DE model needs to be changed for each H0 because it depends explicitly on H0
- set_custom_scalar_sources(custom_sources, source_names=None, source_ell_scales=None, frame='CDM', code_path=None)[source]
Set custom sources for angular power spectrum using camb.symbolic sympy expressions.
- Parameters:
custom_sources – list of sympy expressions for the angular power spectrum sources
source_names – optional list of string names for the sources
source_ell_scales – list or dictionary of scalings for each source name, where for integer entry n, the source for multipole \(\ell\) is scaled by \(\sqrt{(\ell+n)!/(\ell-n)!}\), i.e. \(n=2\) for a new polarization-like source.
frame – if the source is not gauge invariant, frame in which to interpret result
code_path – optional path for output of source code for CAMB f90 source function
- set_dark_energy(w=-1.0, cs2=1.0, wa=0, dark_energy_model='fluid')[source]
Set dark energy parameters (use set_dark_energy_w_a to set w(a) from numerical table instead) To use a custom dark energy model, assign the class instance to the DarkEnergy field instead.
- Parameters:
w – \(w\equiv p_{\rm de}/\rho_{\rm de}\), assumed constant
wa – evolution of w (for dark_energy_model=ppf)
cs2 – rest-frame sound speed squared of dark energy fluid
dark_energy_model – model to use (‘fluid’ or ‘ppf’), default is ‘fluid’
- Returns:
self
- set_dark_energy_w_a(a, w, dark_energy_model='fluid')[source]
Set the dark energy equation of state from tabulated values (which are cubic spline interpolated).
- Parameters:
a – array of sampled a = 1/(1+z) values
w – array of w(a)
dark_energy_model – model to use (‘fluid’ or ‘ppf’), default is ‘fluid’
- Returns:
self
- set_for_lmax(lmax, max_eta_k=None, lens_potential_accuracy=0, lens_margin=150, k_eta_fac=2.5, lens_k_eta_reference=18000.0, nonlinear=None)[source]
Set parameters to get CMB power spectra accurate to specific a l_lmax. Note this does not fix the actual output L range, spectra may be calculated above l_max (but may not be accurate there). To fix the l_max for output arrays use the optional input argument to
results.CAMBdata.get_cmb_power_spectra()
etc.- Parameters:
lmax – \(\ell_{\rm max}\) you want
max_eta_k – maximum value of \(k \eta_0\approx k\chi_*\) to use, which indirectly sets k_max. If None, sensible value set automatically.
lens_potential_accuracy – Set to 1 or higher if you want to get the lensing potential accurate (1 is only Planck-level accuracy)
lens_margin – the \(\Delta \ell_{\rm max}\) to use to ensure lensed \(C_\ell\) are correct at \(\ell_{\rm max}\)
k_eta_fac – k_eta_fac default factor for setting max_eta_k = k_eta_fac*lmax if max_eta_k=None
lens_k_eta_reference – value of max_eta_k to use when lens_potential_accuracy>0; use k_eta_max = lens_k_eta_reference*lens_potential_accuracy
nonlinear – use non-linear power spectrum; if None, sets nonlinear if lens_potential_accuracy>0 otherwise preserves current setting
- Returns:
self
- set_initial_power(initial_power_params)[source]
Set the InitialPower primordial power spectrum parameters
- Parameters:
initial_power_params –
initialpower.InitialPowerLaw
orinitialpower.SplinedInitialPower
instance- Returns:
self
- set_initial_power_function(P_scalar, P_tensor=None, kmin=1e-06, kmax=100.0, N_min=200, rtol=5e-05, effective_ns_for_nonlinear=None, args=())[source]
Set the initial power spectrum from a function P_scalar(k, *args), and optionally also the tensor spectrum. The function is called to make a pre-computed array which is then interpolated inside CAMB. The sampling in k is set automatically so that the spline is accurate, but you may also need to increase other accuracy parameters.
- Parameters:
P_scalar – function returning normalized initial scalar curvature power as function of k (in Mpc^{-1})
P_tensor – optional function returning normalized initial tensor power spectrum
kmin – minimum wavenumber to compute
kmax – maximum wavenumber to compute
N_min – minimum number of spline points for the pre-computation
rtol – relative tolerance for deciding how many points are enough
effective_ns_for_nonlinear – an effective n_s for use with approximate non-linear corrections
args – optional list of arguments passed to P_scalar (and P_tensor)
- Returns:
self
- set_initial_power_table(k, pk=None, pk_tensor=None, effective_ns_for_nonlinear=None)[source]
Set a general initial power spectrum from tabulated values. It’s up to you to ensure the sampling of the k values is high enough that it can be interpolated accurately.
- Parameters:
k – array of k values (Mpc^{-1})
pk – array of primordial curvature perturbation power spectrum values P(k_i)
pk_tensor – array of tensor spectrum values
effective_ns_for_nonlinear – an effective n_s for use with approximate non-linear corrections
- set_matter_power(redshifts=(0.0,), kmax=1.2, k_per_logint=None, nonlinear=None, accurate_massive_neutrino_transfers=False, silent=False)[source]
Set parameters for calculating matter power spectra and transfer functions.
- Parameters:
redshifts – array of redshifts to calculate
kmax – maximum k to calculate (where k is just k, not k/h)
k_per_logint – minimum number of k steps per log k. Set to zero to use default optimized spacing.
nonlinear – if None, uses existing setting, otherwise boolean for whether to use non-linear matter power.
accurate_massive_neutrino_transfers – if you want the massive neutrino transfers accurately
silent – if True, don’t give warnings about sort order
- Returns:
self
- set_nonlinear_lensing(nonlinear)[source]
Settings for whether or not to use non-linear corrections for the CMB lensing potential. Note that set_for_lmax also sets lensing to be non-linear if lens_potential_accuracy>0
- Parameters:
nonlinear – true to use non-linear corrections
- class camb.model.AccuracyParams[source]
Structure with parameters governing numerical accuracy. AccuracyBoost will also scale almost all the other parameters except for lSampleBoost (which is specific to the output interpolation) and lAccuracyBoost (which is specific to the multipole hierarchy evolution), e.g. setting AccuracyBoost=2, IntTolBoost=1.5, means that internally the k sampling for integration will be boosted by AccuracyBoost*IntTolBoost = 3.
- Variables:
AccuracyBoost – (float64) general accuracy setting effecting everything related to step sizes etc. (including separate settings below except the next two)
lSampleBoost – (float64) accuracy for sampling in ell for interpolation for the C_l (if >=50, all ell are calculated)
lAccuracyBoost – (float64) Boosts number of multipoles integrated in Boltzmann hierarchy
AccuratePolarization – (boolean) Do you care about the accuracy of the polarization Cls?
AccurateBB – (boolean) Do you care about BB accuracy (e.g. in lensing)
AccurateReionization – (boolean) Do you care about percent level accuracy on EE signal from reionization?
TimeStepBoost – (float64) Sampling time steps
BackgroundTimeStepBoost – (float64) Number of time steps for background thermal history and source window interpolation
IntTolBoost – (float64) Tolerances for integrating differential equations
SourcekAccuracyBoost – (float64) Accuracy of k sampling for source time integration
IntkAccuracyBoost – (float64) Accuracy of k sampling for integration
TransferkBoost – (float64) Accuracy of k sampling for transfer functions
NonFlatIntAccuracyBoost – (float64) Accuracy of non-flat time integration
BessIntBoost – (float64) Accuracy of bessel integration truncation
LensingBoost – (float64) Accuracy of the lensing of CMB power spectra
NonlinSourceBoost – (float64) Accuracy of steps and kmax used for the non-linear correction
BesselBoost – (float64) Accuracy of bessel pre-computation sampling
LimberBoost – (float64) Accuracy of Limber approximation use
SourceLimberBoost – (float64) Scales when to switch to Limber for source windows
KmaxBoost – (float64) Boost max k for source window functions
neutrino_q_boost – (float64) Number of momenta integrated for neutrino perturbations
- class camb.model.TransferParams[source]
Object storing parameters for the matter power spectrum calculation.
- Variables:
high_precision – (boolean) True for more accuracy
accurate_massive_neutrinos – (boolean) True if you want neutrino transfer functions accurate (false by default)
kmax – (float64) k_max to output (no h in units)
k_per_logint – (integer) number of points per log k interval. If zero, set an irregular optimized spacing
PK_num_redshifts – (integer) number of redshifts to calculate
PK_redshifts – (float64 array) redshifts to output for the matter transfer and power
- class camb.model.SourceTermParams[source]
Structure with parameters determining how galaxy/lensing/21cm power spectra and transfer functions are calculated.
- Variables:
limber_windows – (boolean) Use Limber approximation where appropriate. CMB lensing uses Limber even if limber_window is false, but method is changed to be consistent with other sources if limber_windows is true
limber_phi_lmin – (integer) When limber_windows=True, the minimum L to use Limber approximation for the lensing potential and other sources (which may use higher but not lower)
counts_density – (boolean) Include the density perturbation source
counts_redshift – (boolean) Include redshift distortions
counts_lensing – (boolean) Include magnification bias for number counts
counts_velocity – (boolean) Non-redshift distortion velocity terms
counts_radial – (boolean) Radial displacement velocity term; does not include time delay; subset of counts_velocity, just 1 / (chi * H) term
counts_timedelay – (boolean) Include time delay terms * 1 / (H * chi)
counts_ISW – (boolean) Include tiny ISW terms
counts_potential – (boolean) Include tiny terms in potentials at source
counts_evolve – (boolean) Account for source evolution
line_phot_dipole – (boolean) Dipole sources for 21cm
line_phot_quadrupole – (boolean) Quadrupole sources for 21cm
line_basic – (boolean) Include main 21cm monopole density/spin temperature sources
line_distortions – (boolean) Redshift distortions for 21cm
line_extra – (boolean) Include other sources
line_reionization – (boolean) Replace the E modes with 21cm polarization
use_21cm_mK – (boolean) Use mK units for 21cm
- class camb.model.CustomSources[source]
Structure containing symbolic-compiled custom CMB angular power spectrum source functions. Don’t change this directly, instead call
model.CAMBparams.set_custom_scalar_sources()
.- Variables:
num_custom_sources – (integer) number of sources set
c_source_func – (pointer) Don’t directly change this
custom_source_ell_scales – (integer array) scaling in L for outputs