Initial power spectra¶
- class camb.initialpower.InitialPower(*args, **kwargs)[source]¶
Abstract base class for initial power spectrum classes
- class camb.initialpower.InitialPowerLaw(*args, **kwargs)[source]¶
Bases:
InitialPower
Object to store parameters for the primordial power spectrum in the standard power law expansion.
- Variables:
tensor_parameterization – (integer/string, one of: tensor_param_indeptilt, tensor_param_rpivot, tensor_param_AT)
ns – (float64)
nrun – (float64)
nrunrun – (float64)
nt – (float64)
ntrun – (float64)
r – (float64)
pivot_scalar – (float64)
pivot_tensor – (float64)
As – (float64)
At – (float64)
- has_tensors()[source]¶
Do these settings have non-zero tensors?
- Returns:
True if non-zero tensor amplitude
- set_params(As=2e-09, ns=0.96, nrun=0, nrunrun=0.0, r=0.0, nt=None, ntrun=0.0, pivot_scalar=0.05, pivot_tensor=0.05, parameterization='tensor_param_rpivot')[source]¶
Set parameters using standard power law parameterization. If nt=None, uses inflation consistency relation.
- Parameters:
As – comoving curvature power at k=pivot_scalar (\(A_s\))
ns – scalar spectral index \(n_s\)
nrun – running of scalar spectral index \(d n_s/d \log k\)
nrunrun – running of running of spectral index, \(d^2 n_s/d (\log k)^2\)
r – tensor to scalar ratio at pivot
nt – tensor spectral index \(n_t\). If None, set using inflation consistency
ntrun – running of tensor spectral index
pivot_scalar – pivot scale for scalar spectrum
pivot_tensor – pivot scale for tensor spectrum
parameterization – See CAMB notes. One of - tensor_param_indeptilt = 1 - tensor_param_rpivot = 2 - tensor_param_AT = 3
- Returns:
self
- class camb.initialpower.SplinedInitialPower(*args, **kwargs)[source]¶
Bases:
InitialPower
Object to store a generic primordial spectrum set from a set of sampled k_i, P(k_i) values
- Variables:
effective_ns_for_nonlinear – (float64) Effective n_s to use for approximate non-linear correction models
- set_scalar_log_regular(kmin, kmax, PK)[source]¶
Set log-regular cublic spline interpolation for P(k)
- Parameters:
kmin – minimum k value (not minimum log(k))
kmax – maximum k value (inclusive)
PK – array of scalar power spectrum values, with PK[0]=P(kmin) and PK[-1]=P(kmax)
- set_scalar_table(k, PK)[source]¶
Set arrays of k and P(k) values for cublic spline interpolation. Note that using
set_scalar_log_regular()
may be better (faster, and easier to get fine enough spacing a low k)- Parameters:
k – array of k values (Mpc^{-1})
PK – array of scalar power spectrum values