Matter power spectrum and matter transfer function variables
The various matter power spectrum functions, e.g. get_matter_power_interpolator()
, can calculate power
spectra for various quantities. Each variable used to form the power spectrum has a name as follows:
name |
number |
description |
---|---|---|
k/h |
1 |
\(k/h\) |
delta_cdm |
2 |
\(\Delta_c\), CDM density |
delta_baryon |
3 |
\(\Delta_b\), baryon density |
delta_photon |
4 |
\(\Delta_\gamma\), photon density |
delta_neutrino |
5 |
\(\Delta_r\), for massless neutrinos |
delta_nu |
6 |
\(\Delta_\nu\) for massive neutrinos |
delta_tot |
7 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b+\rho_\nu\Delta_\nu}{\rho_c+\rho_b+\rho_\nu}\), CDM+baryons+massive neutrino density |
delta_nonu |
8 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b}{\rho_b+\rho_c}\), CDM+baryon density |
delta_tot_de |
9 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b+\rho_\nu\Delta_\nu +\rho_{ de}\Delta_{de}}{\rho_c+\rho_b+\rho_\nu}\), CDM+baryons+massive neutrinos+ dark energy (numerator only) density |
Weyl |
10 |
\(k^2\Psi\equiv k^2(\phi+\psi)/2\), the Weyl potential scaled by \(k^2\) to scale in \(k\) like a density. |
v_newtonian_cdm |
11 |
\(-v_{N,c}\, k/{\cal H}\) (where \(v_{N,c}\) is the Newtonian-gauge CDM velocity) |
v_newtonian_baryon |
12 |
\(-v_{N,b}\,k/{\cal H}\) (Newtonian-gauge baryon velocity \(v_{N,b}\)) |
v_baryon_cdm |
13 |
\(v_b-v_c\), relative baryon-CDM velocity |
The number here corresponds to a corresponding numerical index, in Fortran these are the same as model.name, where name are the Transfer_xxx variable names: Transfer_kh=1,Transfer_cdm=2, Transfer_b=3, Transfer_g=4, Transfer_r=5, Transfer_nu=6, Transfer_tot=7, Transfer_nonu=8, Transfer_tot_de=9, Transfer_Weyl=10, Transfer_Newt_vel_cdm=11, Transfer_Newt_vel_baryon=12, Transfer_vel_baryon_cdm = 13.
So for example, requesting var1=’delta_b’, var2=’Weyl’ or alternatively var1=model.Transfer_b, var2=model.Transfer_Weyl would get the power spectrum for the cross-correlation of the baryon density with the Weyl potential. All density variables \(\Delta_i\) here are synchronous gauge.
For transfer function variables (rather than matter power spectra), the variables are normalized corresponding to
unit primordial curvature perturbation on super-horizon scales. The
get_matter_transfer_data()
function returns the above quantities
divided by \(k^2\) (so they are roughly constant at low \(k\) on super-horizon scales).
The example notebook has various examples of getting the matter power spectrum, relating the Weyl-potential spectrum to lensing, and calculating the baryon-dark matter relative velocity spectra. There is also an explicit example of how to calculate the matter power spectrum manually from the matter transfer functions.
When generating dark-age 21cm power spectra (do21cm is set) the transfer functions are instead the model.name variables (see equations 20 and 25 of astro-ph/0702600)
name |
number |
description |
---|---|---|
Transfer_kh |
1 |
\(k/h\) |
Transfer_cdm |
2 |
\(\Delta_c\), CDM density |
Transfer_b |
3 |
\(\Delta_b\), baryon density |
Transfer_monopole |
4 |
\(\Delta_s+(r_\tau-1)(\Delta_{b}-\Delta_{T_s})\), 21cm monopole source |
Transfer_vnewt |
5 |
\(r_\tau kv_{N,b}/\mathcal{H}\), 21cm Newtonian-gauge velocity source |
Transfer_Tmat |
6 |
\(\Delta_{T_m}\), matter temperature perturbation |
Transfer_tot |
7 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b+\rho_\nu\Delta_\nu}{\rho_c+\rho_b+\rho_\nu}\), CDM+baryons+massive neutrino density |
Transfer_nonu |
8 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b}{\rho_b+\rho_c}\), CDM+baryon density |
Transfer_tot_de |
9 |
\(\frac{\rho_c\Delta_c+\rho_b\Delta_b+\rho_\nu\Delta_\nu +\rho_{ de}\Delta_{de}}{\rho_c+\rho_b+\rho_\nu}\), CDM+baryons+massive neutrinos+ dark energy (numerator only) density |
Transfer_Weyl |
10 |
\(k^2\Psi\equiv k^2(\phi+\psi)/2\), the Weyl potential scaled by \(k^2\) to scale in \(k\) like a density. |
Transfer_Newt_vel_cdm |
11 |
\(-v_{N,c}\, k/{\cal H}\) (where \(v_{N,c}\) is the Newtonian-gauge CDM velocity) |
Transfer_Newt_vel_baryon |
12 |
\(-v_{N,b}\,k/{\cal H}\) (Newtonian-gauge baryon velocity \(v_{N,b}\)) |
Transfer_vel_baryon_cdm |
13 |
\(v_b-v_c\), relative baryon-CDM velocity |
If use_21cm_mK is set the 21cm results are multiplied by \(T_b\) to give results in mK units.